互聯網運營數據分析十個經典方法

來源:本站        2017-04-14

  方法一:細分

  嚴格說,細分不是一種方法,它是一切分析的本源。所以它當之無愧要排名第一。

  我經常的口頭禪是,無細分、毋寧死。沒有細分你做什么分析呀。

  細分有兩類,一類是一定條件下的區隔。如:在頁面中停留30秒以上的visit(session);或者只要北京地區的訪客等。其實就是過濾。另一類是維度(dimension)之間的交叉。如:北京地區的新訪問者。即分群(segmentation)。

  細分幾乎幫助我們解決所有問題。比如,構建轉化漏斗,實際上就是把轉化過程按照步驟進行細分。流量渠道的分析和評估也需要大量用到細分的方法。

  維度之間的交叉是比較體現一個人分析水平的細分方法。比如,我的朋友孫維(卡車之家的數據負責人),他將用戶的反饋作為event tracking的屬性(放在了event action屬性中),提交給GA,然后在自定義的報告中,將用戶反饋和用戶的其他行為交叉起來,從而看到有某一類反饋的用戶,他們的行為軌跡是什么,從而推測發生了什么問題。

  分析跳出率時,我們也會把landing page和它的traffic source(流量源)進行交叉,以檢查高跳出率的表現是由著陸頁造成,還是由流量造成。這也是典型的維度交叉細分的應用。

  無細分,毋寧死。

  方法二:Attribution(歸因)

  歸因不是人人都聽說過,用好的更是寥寥無幾。 不過,考慮到人們購買某一樣東西的決策,可能受到多種因素(數字營銷媒體)的影響,比如看到廣告了解到這個商品的存在,利用搜索,進一步了解這個商品,然后在social渠道上看到這個商品的公眾號等等。這些因素的綜合,讓一個人下定了決心購買。

  因此,很多時候,單一的廣告渠道并不是你打開客戶閘門的閥門,而是多種渠道共同作用的結果。

  如何了解數字營銷渠道之間的這種先后關系或者相互作用?如何設置合理的數字營銷渠道的策略以促進這種關系?在評價一個渠道的時候,如何將歸因考慮在內從而能夠更客觀的衡量?這些都需要用到歸因。

  如果你是互聯網營銷的負責人,歸因分析是必不可少的分析方法。

  方法三:Link Tag的流量標記

  Link tag標記流量源頭 ,絕對是所有方法中最為基本重要的一種。這種方法不僅僅適用于網站的流量來源,也同樣適用于app下載來源的監測(但后者需要滿足一定的條件)。

  Link tag的意思,是在流量源頭的鏈出鏈接上(鏈出URL上)加上尾部參數。這些參數不僅不會影響鏈接的跳轉,而且能夠標明這個鏈接所屬的流量源是什么(理論上能夠標明流量源的屬性數是無限的)。

  Link tag不能單獨起作用,必須要在網站分析工具或者app分析工具的配合下工作。

  Link tag是流量分析的基礎,要嚴肅的分析流量,不僅僅是常規分析,還包括歸因分析(attribution analysis),都需要使用link tag的方法。

  方法四:轉化漏斗

  分析轉化的基本模型是轉化漏斗(conversion funnel),這個大家都應該很熟悉了。

  轉化漏斗最常見的是把最終的轉化設置為某種目的的實現,最典型的就是實現銷售,所以大家很多時候把轉化和銷售是混為一談。但轉化漏斗的最終轉化也可以是其他任何目的的實現,比如一次使用app的時間超過10分鐘(session duration >10minutes)。對于增長黑客而言,構建漏斗是最為常見的工作。

  漏斗幫助我們解決兩方面的問題,第一、在一個過程中是否發生泄漏,如果有泄漏,我們能在漏斗中看到,并且能夠通過進一步的分析堵住這個泄漏點;第二、在一個過程中是否出現了其他不應該出現的過程,造成轉化主進程受到損害。

  漏斗的構建很簡單,無論web還是app,都是最好用的方法之一。但漏斗使用的奧秘則很豐富。而且漏斗方法還會和其他方法混合使用,樂趣無窮。我在互聯網數據運營的課程中也會具體講解。

  方法五:Attribution(歸因)

  歸因不是人人都聽說過,用好的更是寥寥無幾。 不過,考慮到人們購買某一樣東西的決策,可能受到多種因素(數字營銷媒體)的影響,比如看到廣告了解到這個商品的存在,利用搜索,進一步了解這個商品,然后在social渠道上看到這個商品的公眾號等等。這些因素的綜合,讓一個人下定了決心購買。

  因此,很多時候,單一的廣告渠道并不是你打開客戶閘門的閥門,而是多種渠道共同作用的結果。

  如何了解數字營銷渠道之間的這種先后關系或者相互作用?如何設置合理的數字營銷渠道的策略以促進這種關系?在評價一個渠道的時候,如何將歸因考慮在內從而能夠更客觀的衡量?這些都需要用到歸因。

  如果你是互聯網營銷的負責人,歸因分析是必不可少的分析方法。

  方法六:微轉化

  人人都懂轉化漏斗,但不是所有人都關注微轉化。但是你想指望一個轉化漏斗不斷提升轉化率太困難了,而微轉化卻可以做到。轉化漏斗解決的是轉化過程中的大問題,但大問題總是有限的,這些問題搞定后,你還是需要對你的轉化進行持續優化,這個時候必須要用到微轉化。

  微轉化是指在轉化必經過程之外,但同樣會對轉化產生影響的各種元素。這些元素與用戶的互動,左右了用戶的感受,也直接或者間接的影響了用戶的決定。

  比如,商品的一些圖片展示,并不是轉化過程中必須要看的,但是它們的存在,是否會對用戶的購買決定產生影響?這些圖片就是微轉化元素。

  個人認為,研究微轉化比研究轉化更好玩。有一些案例,課堂上跟大家講。

  方法七:AB測試

  增長黑客不談AB測試是恥辱。

  通過數據優化運營和產品的邏輯很簡單——看到問題,想個主意,做出原型,測試定型。

  比如,你發現轉化漏斗中間有一個漏洞,于是你想,一定是商品價格不對頭,讓大家不想買了。你看到了問題——漏斗,而且你也想出了主意——改變定價。

  但是這個主意靠不靠譜,可不是你想出來的,必須得讓真實的用戶用。于是你用AB測試,一部分的用戶還是看到老價格,另外一部分用戶看到新價格。若是你的主意真的管用,新價格就應該有更好的轉化。若真如此,新的價格就被確定下來(定型),開始在新的轉化高度上運行,直到你又發現一個新的需要改進的問題。

  增長黑客的一個主要思想之一,是不要做一個大而全的東西,而是不斷做出能夠快速驗證的小而精的東西。快速驗證,如何驗證的?主要方法就是AB測試。

  今天的互聯網世界,由于流量紅利時代的結束,對于快速迭代的要求大大提升了,這也使我們更加在意測試的力量。

  在web上進行AB測試很簡單,在app上難度要高很多,但解決方法還是很多的。國外那些經典app,那些賣錢游戲,幾乎天天都在AB測試。

(c)2008-2020納貝科技, Inc. All rights reserved.    備案號:渝ICP備12007298號
大发pk10是哪里的彩票